1 Notation

Let E be the Bulletproof curve with prime order r.

Variables:

- Seed S – 32-byte string.
- Secret K – 32-byte string.
- Transaction hash X – 32-byte string.
- Bidding data M – 32-byte string.
- Merkle tree T of bids with root R_T.
- Coin amount d – integer between 0 and 2^{64}.
- Counter N – 32-byte string.

Functions:

- H – Poseidon, a Bulletproofs-friendly hash function. Maps strings of F_r to F_r.
- $H(X, O)$ Merkle root construction function. It assumes that O is a Merkle opening for X in a tree built using H, and outputs the tree root corresponding to the opening.
- $F(d, Y)$ – score function. Takes 64-bit input d and 256-bit input Y and operates as follows:
 - Truncate Y to left 128 bits and interpret the result as 128-bit integer Y'.
 - Output $f = (d \cdot 2^{128})/Y'$, where division is the integer division.

2 Circuit for blind bid computation

Let C be the following computation:

- **Public Input:** S.
- **Private Input:** K, d.
- **Flow**
1. \(M = H(K) \);
2. \(Z = H(S, K) \);
3. \(C_d = g^d h^r \)
4. \(X = H(C_d, M, S) \);
5. \(H(X, O) = R \).
6. \(Y = H(S, X, K) \);
7. \(Q = F(d, Y) \).

Public Output: \(Z, R, Q \)

Then \(\Pi \) is the Bulletproof proof of computational integrity of \(C \).

3 Protocol

Procedure:

1. Seed \(S \) is computed and broadcasted.
2. Bidder selects secret \(K \).
3. Bidder, at most once per seed, sends a bidding transaction with data \(M = H(K) \) and proof of knowledge of \(K \).
4. For every bidding transaction with \(d \) coins in the form of commitment \(C_d \) and data \(M \) the uniqueness of \(M \) is verified and entry \(X = H(C_d, M, S) \) is added to \(T \).
5. Potential bidder computes \(Y = H(S, X, K) \), score \(Q = F(d, Y) \), and identifier \(Z = H(S, K) \).
6. Bidder selects a bid root \(R_T \) and broadcasts \((Z, R_T, Q, \pi)\) where
 \[
 \pi = \Pi(Z, R_T, Q, S; K, d).
 \]
7. The proof with the highest \(Q \) wins.
8. The winner can use \(Z \) to identify himself during the block generation.

Remark 1. By definition \(Y' < 2^{128} \) so \(Q > d \). Thus a score for each bidder is higher than his bid. Therefore, the winning score \(Q_{\text{max}} \) is bigger than any bid as otherwise the owner of such bid would have a bigger score.

4 Security

Requirements:

1. A tuple \((Z, R, Q, \pi)\) is a proof of knowledge of secret \(K \) such that \(Z = H(S, K) \).
2. **Bid binding** For given \(Z \) it is infeasible to find two different bids that yield the same \(Z \).
3. **Bid privacy** Based on the score, no bid can be ruled out as a winner. Close bids have close probability to win.
Proofs:

1. π is a proof of knowledge of K used in the computation of Z, according to the properties of the Bulletproofs proof system and to the description of computation C.

2. Assuming collision resistance of H it is infeasible to find distinct M, M' giving the same Z or distinct K, K' that yield the same M. Therefore for one Z can exist only one M and one X (by the uniqueness requirement of M), and thus the only possible bid.

3. We first show that for any pair $(d, Q), d < Q$, (see Remark 1) there exists 128-bit Y such that $F(d, Y) = Q$. We note that in the bid computation we get $Q > d$ Let us consider

$$y = \frac{(d \cdot 2^{128})}{Q}.$$

We obtain that $d \cdot 2^{128} = Qy + v$, where $v < Q$. This implies

$$\frac{(d \cdot 2^{128})}{y} = Q + v/y = Q.$$

The last equation holds since Q (around 64 bits) is much smaller than y (128 bits, as $d < Q$). Therefore each bid can be a winner and can not be ruled out.

Now consider two bids d and $d + \epsilon$ and compare the probabilities $P_y = y/2^{128}$ of getting hashes y and y' based on their size as integers. For given Q, we can compute candidates as

$$y = \frac{(d \cdot 2^{128})}{Q}; \quad y' = \frac{((d + \epsilon) \cdot 2^{128})}{Q}.$$

It follows that $y' \approx (1 + \epsilon/d)y$, so we get

$$P_y/P_{y'} = y/y' \approx 1 + \epsilon/d.$$

So we conclude that the quotient of probabilities is approximately equal to the quotient of bids.